Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Chem Toxicol ; : 114580, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467293

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

2.
Int J Pharm ; 653: 123919, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38373598

ABSTRACT

Internal radiotherapy delivers radioactive sources inside the body, near to or into malignant tumours, which may be particularly effective when malignancies are not responding to external beam radiotherapy. A pure beta emitter, 90Y, is currently used for internal radiotherapy. However, theranostic radionuclide-doped microspheres can be developed by incorporating 153Sm, which emits therapeutic beta and diagnostic gamma energies. This study investigated the production of high concentrations of samarium-content doped phosphate-based glass microspheres. The glass P60 (i.e. 60P2O5-25CaO-15Na2O) was mixed with Sm2O3 at ratios of 75:25 (G75:Sm25), 50:50 (G50:Sm50) and 25:75 (G25:Sm75) and processed via flame spheroidisation. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) confirmed the microsphere uniformity with significantly high samarium content up to 44 % in G25:Sm75. Via X-ray diffraction (XRD) analysis, samarium-doped microspheres appeared to be glass-ceramic in nature. Mass-loss, size and pH changes were performed over 28 days, revealing a significant increase in samarium microsphere stability. After 15 min of neutron activation (neutron flux 3.01 × 1013 n.cm-2.s-1), the specific activity of the microspheres (G75:Sm25, G50:Sm50 and G25:Sm75) was 0.28, 0.54 and 0.58 GBq.g-1, respectively. Therefore, the samarium microspheres produced in this study provide great potential for improving internal radiotherapy treatment for liver cancer by avoiding complex procedures and using less microspheres with shorter irradiation time.


Subject(s)
Liver Neoplasms , Samarium , Humans , Samarium/chemistry , Phosphates , Microspheres , Glass/chemistry
3.
Mar Pollut Bull ; 197: 115720, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939519

ABSTRACT

Safe levels of heavy metals in the surface water and sediment of the eastern Bay of Bengal coast have not been universally established. Current study characterized heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd) and lead (Pb) in surface water and sediments of the most important fishing resource at the eastern Bay of Bengal coast, Bangladesh. Both water and sediment samples were analyzed using inductively coupled plasma mass spectrometer. Considering both of the seasons, the mean concentrations of Cr, As, Cd, and Pb in water samples were 33.25, 8.14, 0.48, and 21.14 µg/L, respectively and in sediment were 30.47, 4.48, 0.20, and 19.98 mg/kg, respectively. Heavy metals concentration in water samples surpassed the acceptable limits of usable water quality, indicating that water from this water resource is not safe for drinking, cooking, bathing, and any other uses. Enrichment factors also directed minor enrichment of heavy metals in sediment of the coast. Other indexes for ecological risk assessment such as pollution load index (PLI), contamination factor (CF), geoaccumulation index (Igeo), modified contamination degree (mCd), and potential ecological risk index (PERI) also indicated that sediment of the coastal watershed was low contamination. In-depth inventorying of heavy metals in both water and sediment of the study area are required to determine ecosystem health for holistic risk assessment and management.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Cadmium , Chromium , Lead , Ecosystem , Bays , Developing Countries , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments , Rivers , Metals, Heavy/analysis , Risk Assessment , Water Quality
4.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984019

ABSTRACT

Biowastes from agriculture, sewage, household wastes, and industries comprise promising resources to produce biomaterials while reducing adverse environmental effects. This study focused on utilising waste-derived materials (i.e., eggshells as a calcium source, struvite as a phosphate source, and CH3COOH as dissolution media) to produce value-added products (i.e., calcium phosphates (CaPs) derived from biomaterials) using a continuous flow hydrothermal synthesis route. The prepared materials were characterised via XRD, FEG-SEM, EDX, FTIR, and TEM analysis. Magnesium whitlockite (Mg-WH) and hydroxyapatite (HA) were produced by single-phase or biphasic CaPs by reacting struvite with either calcium nitrate tetrahydrate or an eggshell solution at 200 °C and 350 °C. Rhombohedral-shaped Mg-WH (23-720 nm) along with tube (50-290 nm diameter, 20-71 nm thickness) and/or ellipsoidal morphologies of HA (273-522 nm width) were observed at 350 °C using HNO3 or CH3COOH to prepare the eggshell and struvite solutions, and NH4OH was used as the pH buffer. The Ca/P (atomic%) ratios obtained ranged between 1.3 and 1.7, indicating the formation of Mg-WH and HA. This study showed that eggshells and struvite usage, along with CH3COOH, are promising resources as potential sustainable precursors and dissolution media, respectively, to produce CaPs with varying morphologies.

5.
J Biomater Appl ; 36(8): 1427-1443, 2022 03.
Article in English | MEDLINE | ID: mdl-35050809

ABSTRACT

Although FDA approved and clinically utilised, research on 45S5 Bioglass® and S53P4 including other bioactive glasses continues in order to advance their applicability for a range of alternate applications. For example, rendering these particles porous would enable incorporation of varying biological payloads (i.e. cells, drugs and growth factors) and making them spherical would enhance their flow properties enabling delivery to target sites via minimally invasive injection procedures. This paper reports on the manufacture of solid (non-porous; SGMS) and highly porous microspheres (PGMS) with large external pores and fully interconnected porosity from bioactive silicate glass formulations (45S5 and S53P4) via a single stage flame spheroidisation process and their physicochemical properties including in vitro biological response. Morphological and physical characterisation of the SGMS and PGMS revealed interconnected porosity up to 65 ± 5%. Mass loss studies comparing between SGMS and PGMS revealed 1.5 times higher mass loss for the PGMS over 28 days. Also, in vitro bioactivity studies using simulated body fluid (SBF) revealed hydroxyapatite (HA) formation at earlier time point for PGMS compared to their SGMS counterparts (i.e day 1 for PGMS and day 3 for SGMS of 45S5). In addition, HA layers were also formed in cell culture media, with the exception of SGMS of 45S5, which revealed CaP formation with a ratio of 1.52-1.78. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed mouse 3T3 cells were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of both 45S5 and S53P4 SGMS and PGMS. More importantly and especially for orthobiologic applications, cells were observed to have migrated within the pores of the PGMS. As such, the PGMS developed from these bioactive silicate glasses are highly promising candidate materials for orthobiologics and alternate applications requiring delivery of biologic payloads.


Subject(s)
Ceramics , Osteogenesis , Animals , Ceramics/chemistry , Glass/chemistry , Mice , Microspheres , Porosity , Silicates
6.
Mater Sci Eng C Mater Biol Appl ; 120: 111668, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545833

ABSTRACT

This paper reports on the role of phosphate-based glass (PBG) microspheres and their physicochemical properties including in vitro biological response to human mesenchymal stem cells (hMSCs). Solid and porous microspheres were prepared via a flame spheroidisation process. The Mg content in the PBG formulations explored was reduced from 24 to 2 mol% with a subsequent increase in Ca content. A small quantity of TiO2 (1 mol%) was added to the lower Mg-content glass (2 mol%) to avoid crystallisation. Morphological and physical characterisation of porous microspheres revealed interconnected porosity (up to 76 ± 5 %), average external pore sizes of 55 ± 5 µm with surface areas ranging from 0.38 to 0.43 m2 g-1. Degradation and ion release studies conducted compared the solid (non-porous) and porous microspheres and revealed 1.5 to 2.5 times higher degradation rate for porous microspheres. Also, in vitro bioactivity studies using simulated body fluid (SBF) revealed Ca/P ratios for porous microspheres of all three glass formulations were between 0.75 and 0.92 which were within the range suggested for precipitated amorphous calcium phosphate. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed hMSCs were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of the formulations tested. However, the higher Mg content (24 mol%) porous microsphere showed the most potent osteogenic response and is therefore considered as a promising candidate for bone repair applications.


Subject(s)
Osteogenesis , Phosphates , Glass , Humans , Microspheres , Porosity
7.
Int J Mol Sci ; 22(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467686

ABSTRACT

Phosphate-based glasses (PBGs) offer significant therapeutic potential due to their bioactivity, controllable compositions, and degradation rates. Several PBGs have already demonstrated their ability to support direct cell growth and in vivo cytocompatibility for bone repair applications. This study investigated development of PBG formulations with pyro- and orthophosphate species within the glass system (40 - x)P2O5·(16 + x)CaO·20Na2O·24MgO (x = 0, 5, 10 mol%) and their effect on stem cell adhesion properties. Substitution of phosphate for calcium revealed a gradual transition within the glass structure from Q2 to Q0 phosphate species. Human mesenchymal stem cells were cultured directly onto discs made from three PBG compositions. Analysis of cells seeded onto the discs revealed that PBG with higher concentration of pyro- and orthophosphate content (61% Q1 and 39% Q0) supported a 4.3-fold increase in adhered cells compared to glasses with metaphosphate connectivity (49% Q2 and 51% Q1). This study highlights that tuning the composition of PBGs to possess pyro- and orthophosphate species only, enables the possibility to control cell adhesion performance. PBGs with superior cell adhesion profiles represent ideal candidates for biomedical applications, where cell recruitment and support for tissue ingrowth are of critical importance for orthopaedic interventions.


Subject(s)
Cell Adhesion , Cell Culture Techniques , Glass/chemistry , Mesenchymal Stem Cells/drug effects , Phosphates/chemistry , Biocompatible Materials/chemistry , Calcium/chemistry , Calorimetry, Differential Scanning , Cell Nucleus/metabolism , Diphosphates/chemistry , Fracture Healing , Green Fluorescent Proteins/metabolism , Humans , Magnetic Resonance Spectroscopy , Materials Testing , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , X-Ray Diffraction
8.
Biomater Sci ; 9(5): 1826-1844, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33459732

ABSTRACT

This paper reports on the rapid development of porous hydroxyapatite (HA) microspheres with large external pores and fully interconnected porosity. These porous microspheres were produced by converting borates glasses (namely 45B5, B53P4 and 13-93B) into HA by immersing them in potassium phosphate media and simulated body fluid (SBF). Solid (SGMS) non-porous and highly porous (PGMS) microspheres were prepared from borate glasses via a novel flame spheroidisation process and their physicochemical properties including in vitro biological response were investigated. Morphological and physical characterisation of the PGMS showed interconnected porosity (up to 75 ± 5%) with average external pore sizes of 50 ± 5 µm. Mass loss, ion release, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) analysis confirmed complete conversion to HA in 0.02 M K2HPO4 solution for the PGMS (with exception of 13-93B glass) and at significantly faster rates compared to their SGMS counterparts. However, 13-93B microspheres only converted to HA in Na2HPO4 solution. The in vitro SBF bioactivity studies for all the borate compositions showed HA formation and much earlier for PGMS compared to SGMS. Direct cell culture studies using hMSCs revealed that the converted porous HA microspheres showed enhanced pro-osteogenic properties compared to their unconverted counterparts and such are considered as highly promising candidate materials for bone repair (and orthobiological) applications.


Subject(s)
Borates , Durapatite , Glass , Microscopy, Electron, Scanning , Microspheres , Porosity , X-Ray Diffraction
9.
J Biomed Mater Res B Appl Biomater ; 108(3): 674-686, 2020 04.
Article in English | MEDLINE | ID: mdl-31172669

ABSTRACT

Varying formulations in the glass system of 40P2 O5 ─(24 - x)MgO─(16 + x)CaO─(20 - y)Na2 O─yTiO2 (where 0 ≤ x ≤ 22 and y = 0 or 1) were prepared via melt-quenching. The structure of the glasses was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and the activation energy of crystallization (Ec ) were measured using thermal analysis and the Kissinger equation, respectively. The glass forming ability of the formulations investigated was seen to decrease with reducing MgO content down to 8 mol% and the glass stability region also decreased from 106 to 90°C with decreasing MgO content. The activation energy of crystallization (Ec ) values also decreased from 248 (for 24 mol% MgO glass) to 229 kJ/mol (for the 8 mol% MgO content) with the replacement of MgO by CaO for glasses with no TiO2 . The formulations containing less than 8 mol% MgO without TiO2 showed a strong tendency toward crystallization. However, the addition of 1 mol% TiO2 in place of Na2 O for these glasses with less than 8 mol% MgO content, inhibited their crystallization tendency. Glasses containing 8 mol% MgO with 1 mol% TiO2 revealed a 12°C higher glass transition temperature, a 14°C increase in glass stability against crystallization and a 38 kJ/mol increase in Ec in comparison to their non TiO2 containing counterpart. NMR spectroscopy revealed that all of the formulations contained almost equal percentages of Q1 and Q2 species. However, FTIR and Raman spectroscopies showed that the local structure of the glasses had been altered with addition of 1 mol% TiO2 , which acted as a network modifier, impeding crystallization by increasing the cross-linking between phosphate chains and consequently leading to increased Ec as well as their glass forming ability.


Subject(s)
Magnesium Oxide/chemistry , Phosphates/chemistry , Titanium/chemistry , Calcium Compounds/chemistry , Cross-Linking Reagents/chemistry , Crystallization , Magnetic Resonance Spectroscopy , Molecular Structure , Oxides/chemistry , Sodium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Structure-Activity Relationship , Thermodynamics , Transition Temperature
10.
J Tissue Eng ; 8: 2041731417719170, 2017.
Article in English | MEDLINE | ID: mdl-28794848

ABSTRACT

An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...